Simple basis coordinates | Epsilon coordinates | Reflection w.r.t. root |
(-1, -1, -1, -1, -1, -1, -1) | -e_{1}+e_{8} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, -1, -1, -1, -1, -1, -1) | -e_{2}+e_{8} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}\) |
(-1, -1, -1, -1, -1, -1, 0) | -e_{1}+e_{7} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, 0, -1, -1, -1, -1, -1) | -e_{3}+e_{8} | \(s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}\) |
(0, -1, -1, -1, -1, -1, 0) | -e_{2}+e_{7} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}\) |
(-1, -1, -1, -1, -1, 0, 0) | -e_{1}+e_{6} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, 0, 0, -1, -1, -1, -1) | -e_{4}+e_{8} | \(s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}\) |
(0, 0, -1, -1, -1, -1, 0) | -e_{3}+e_{7} | \(s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}\) |
(0, -1, -1, -1, -1, 0, 0) | -e_{2}+e_{6} | \(s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}\) |
(-1, -1, -1, -1, 0, 0, 0) | -e_{1}+e_{5} | \(s_{1}s_{2}s_{3}s_{4}s_{3}s_{2}s_{1}\) |
(0, 0, 0, 0, -1, -1, -1) | -e_{5}+e_{8} | \(s_{5}s_{6}s_{7}s_{6}s_{5}\) |
(0, 0, 0, -1, -1, -1, 0) | -e_{4}+e_{7} | \(s_{4}s_{5}s_{6}s_{5}s_{4}\) |
(0, 0, -1, -1, -1, 0, 0) | -e_{3}+e_{6} | \(s_{3}s_{4}s_{5}s_{4}s_{3}\) |
(0, -1, -1, -1, 0, 0, 0) | -e_{2}+e_{5} | \(s_{2}s_{3}s_{4}s_{3}s_{2}\) |
(-1, -1, -1, 0, 0, 0, 0) | -e_{1}+e_{4} | \(s_{1}s_{2}s_{3}s_{2}s_{1}\) |
(0, 0, 0, 0, 0, -1, -1) | -e_{6}+e_{8} | \(s_{6}s_{7}s_{6}\) |
(0, 0, 0, 0, -1, -1, 0) | -e_{5}+e_{7} | \(s_{5}s_{6}s_{5}\) |
(0, 0, 0, -1, -1, 0, 0) | -e_{4}+e_{6} | \(s_{4}s_{5}s_{4}\) |
(0, 0, -1, -1, 0, 0, 0) | -e_{3}+e_{5} | \(s_{3}s_{4}s_{3}\) |
(0, -1, -1, 0, 0, 0, 0) | -e_{2}+e_{4} | \(s_{2}s_{3}s_{2}\) |
(-1, -1, 0, 0, 0, 0, 0) | -e_{1}+e_{3} | \(s_{1}s_{2}s_{1}\) |
(0, 0, 0, 0, 0, 0, -1) | -e_{7}+e_{8} | \(s_{7}\) |
(0, 0, 0, 0, 0, -1, 0) | -e_{6}+e_{7} | \(s_{6}\) |
(0, 0, 0, 0, -1, 0, 0) | -e_{5}+e_{6} | \(s_{5}\) |
(0, 0, 0, -1, 0, 0, 0) | -e_{4}+e_{5} | \(s_{4}\) |
(0, 0, -1, 0, 0, 0, 0) | -e_{3}+e_{4} | \(s_{3}\) |
(0, -1, 0, 0, 0, 0, 0) | -e_{2}+e_{3} | \(s_{2}\) |
(-1, 0, 0, 0, 0, 0, 0) | -e_{1}+e_{2} | \(s_{1}\) |
(1, 0, 0, 0, 0, 0, 0) | e_{1}-e_{2} | \(s_{1}\) |
(0, 1, 0, 0, 0, 0, 0) | e_{2}-e_{3} | \(s_{2}\) |
(0, 0, 1, 0, 0, 0, 0) | e_{3}-e_{4} | \(s_{3}\) |
(0, 0, 0, 1, 0, 0, 0) | e_{4}-e_{5} | \(s_{4}\) |
(0, 0, 0, 0, 1, 0, 0) | e_{5}-e_{6} | \(s_{5}\) |
(0, 0, 0, 0, 0, 1, 0) | e_{6}-e_{7} | \(s_{6}\) |
(0, 0, 0, 0, 0, 0, 1) | e_{7}-e_{8} | \(s_{7}\) |
(1, 1, 0, 0, 0, 0, 0) | e_{1}-e_{3} | \(s_{1}s_{2}s_{1}\) |
(0, 1, 1, 0, 0, 0, 0) | e_{2}-e_{4} | \(s_{2}s_{3}s_{2}\) |
(0, 0, 1, 1, 0, 0, 0) | e_{3}-e_{5} | \(s_{3}s_{4}s_{3}\) |
(0, 0, 0, 1, 1, 0, 0) | e_{4}-e_{6} | \(s_{4}s_{5}s_{4}\) |
(0, 0, 0, 0, 1, 1, 0) | e_{5}-e_{7} | \(s_{5}s_{6}s_{5}\) |
(0, 0, 0, 0, 0, 1, 1) | e_{6}-e_{8} | \(s_{6}s_{7}s_{6}\) |
(1, 1, 1, 0, 0, 0, 0) | e_{1}-e_{4} | \(s_{1}s_{2}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 1, 0, 0, 0) | e_{2}-e_{5} | \(s_{2}s_{3}s_{4}s_{3}s_{2}\) |
(0, 0, 1, 1, 1, 0, 0) | e_{3}-e_{6} | \(s_{3}s_{4}s_{5}s_{4}s_{3}\) |
(0, 0, 0, 1, 1, 1, 0) | e_{4}-e_{7} | \(s_{4}s_{5}s_{6}s_{5}s_{4}\) |
(0, 0, 0, 0, 1, 1, 1) | e_{5}-e_{8} | \(s_{5}s_{6}s_{7}s_{6}s_{5}\) |
(1, 1, 1, 1, 0, 0, 0) | e_{1}-e_{5} | \(s_{1}s_{2}s_{3}s_{4}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 1, 1, 0, 0) | e_{2}-e_{6} | \(s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}\) |
(0, 0, 1, 1, 1, 1, 0) | e_{3}-e_{7} | \(s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}\) |
(0, 0, 0, 1, 1, 1, 1) | e_{4}-e_{8} | \(s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}\) |
(1, 1, 1, 1, 1, 0, 0) | e_{1}-e_{6} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 1, 1, 1, 0) | e_{2}-e_{7} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}\) |
(0, 0, 1, 1, 1, 1, 1) | e_{3}-e_{8} | \(s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}\) |
(1, 1, 1, 1, 1, 1, 0) | e_{1}-e_{7} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
(0, 1, 1, 1, 1, 1, 1) | e_{2}-e_{8} | \(s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}\) |
(1, 1, 1, 1, 1, 1, 1) | e_{1}-e_{8} | \(s_{1}s_{2}s_{3}s_{4}s_{5}s_{6}s_{7}s_{6}s_{5}s_{4}s_{3}s_{2}s_{1}\) |
Comma delimited list of roots: (-1, -1, -1, -1, -1, -1, -1), (0, -1, -1, -1, -1, -1, -1), (-1, -1, -1, -1, -1, -1, 0), (0, 0, -1, -1, -1, -1, -1), (0, -1, -1, -1, -1, -1, 0), (-1, -1, -1, -1, -1, 0, 0), (0, 0, 0, -1, -1, -1, -1), (0, 0, -1, -1, -1, -1, 0), (0, -1, -1, -1, -1, 0, 0), (-1, -1, -1, -1, 0, 0, 0), (0, 0, 0, 0, -1, -1, -1), (0, 0, 0, -1, -1, -1, 0), (0, 0, -1, -1, -1, 0, 0), (0, -1, -1, -1, 0, 0, 0), (-1, -1, -1, 0, 0, 0, 0), (0, 0, 0, 0, 0, -1, -1), (0, 0, 0, 0, -1, -1, 0), (0, 0, 0, -1, -1, 0, 0), (0, 0, -1, -1, 0, 0, 0), (0, -1, -1, 0, 0, 0, 0), (-1, -1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, -1), (0, 0, 0, 0, 0, -1, 0), (0, 0, 0, 0, -1, 0, 0), (0, 0, 0, -1, 0, 0, 0), (0, 0, -1, 0, 0, 0, 0), (0, -1, 0, 0, 0, 0, 0), (-1, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 0, 0), (0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 1, 1), (1, 1, 1, 0, 0, 0, 0), (0, 1, 1, 1, 0, 0, 0), (0, 0, 1, 1, 1, 0, 0), (0, 0, 0, 1, 1, 1, 0), (0, 0, 0, 0, 1, 1, 1), (1, 1, 1, 1, 0, 0, 0), (0, 1, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 1, 0), (0, 0, 0, 1, 1, 1, 1), (1, 1, 1, 1, 1, 0, 0), (0, 1, 1, 1, 1, 1, 0), (0, 0, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 0), (0, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) The resulting Lie bracket pairing table follows. roots simple coords | epsilon coordinates | [,] | g_{-28} | g_{-27} | g_{-26} | g_{-25} | g_{-24} | g_{-23} | g_{-22} | g_{-21} | g_{-20} | g_{-19} | g_{-18} | g_{-17} | g_{-16} | g_{-15} | g_{-14} | g_{-13} | g_{-12} | g_{-11} | g_{-10} | g_{-9} | g_{-8} | g_{-7} | g_{-6} | g_{-5} | g_{-4} | g_{-3} | g_{-2} | g_{-1} | h_{1} | h_{2} | h_{3} | h_{4} | h_{5} | h_{6} | h_{7} | g_{1} | g_{2} | g_{3} | g_{4} | g_{5} | g_{6} | g_{7} | g_{8} | g_{9} | g_{10} | g_{11} | g_{12} | g_{13} | g_{14} | g_{15} | g_{16} | g_{17} | g_{18} | g_{19} | g_{20} | g_{21} | g_{22} | g_{23} | g_{24} | g_{25} | g_{26} | g_{27} | g_{28} |
(-1, -1, -1, -1, -1, -1, -1) | -e_{1}+e_{8} | g_{-28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-28} | 0 | 0 | 0 | 0 | 0 | g_{-28} | g_{-27} | 0 | 0 | 0 | 0 | 0 | -g_{-26} | g_{-25} | 0 | 0 | 0 | 0 | -g_{-23} | g_{-22} | 0 | 0 | 0 | -g_{-19} | g_{-18} | 0 | 0 | -g_{-14} | g_{-13} | 0 | -g_{-8} | g_{-7} | -g_{-1} | -h_{7}-h_{6}-h_{5}-h_{4}-h_{3}-h_{2}-h_{1} |
(0, -1, -1, -1, -1, -1, -1) | -e_{2}+e_{8} | g_{-27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-28} | -g_{-27} | g_{-27} | 0 | 0 | 0 | 0 | g_{-27} | 0 | g_{-25} | 0 | 0 | 0 | 0 | -g_{-24} | 0 | g_{-22} | 0 | 0 | 0 | -g_{-20} | 0 | g_{-18} | 0 | 0 | -g_{-15} | 0 | g_{-13} | 0 | -g_{-9} | 0 | g_{-7} | -g_{-2} | 0 | -h_{7}-h_{6}-h_{5}-h_{4}-h_{3}-h_{2} | -g_{1} |
(-1, -1, -1, -1, -1, -1, 0) | -e_{1}+e_{7} | g_{-26} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-28} | 0 | 0 | 0 | 0 | 0 | 0 | g_{-26} | 0 | 0 | 0 | 0 | g_{-26} | -g_{-26} | g_{-24} | 0 | 0 | 0 | 0 | -g_{-23} | 0 | g_{-21} | 0 | 0 | 0 | -g_{-19} | 0 | g_{-17} | 0 | 0 | -g_{-14} | 0 | g_{-12} | 0 | -g_{-8} | 0 | g_{-6} | -g_{-1} | 0 | -h_{6}-h_{5}-h_{4}-h_{3}-h_{2}-h_{1} | 0 | g_{7} |
(0, 0, -1, -1, -1, -1, -1) | -e_{3}+e_{8} | g_{-25} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-28} | 0 | 0 | 0 | 0 | 0 | g_{-27} | 0 | 0 | -g_{-25} | g_{-25} | 0 | 0 | 0 | g_{-25} | 0 | 0 | g_{-22} | 0 | 0 | 0 | -g_{-21} | 0 | 0 | g_{-18} | 0 | 0 | -g_{-16} | 0 | 0 | g_{-13} | 0 | -g_{-10} | 0 | 0 | g_{-7} | -g_{-3} | 0 | 0 | -h_{7}-h_{6}-h_{5}-h_{4}-h_{3} | 0 | -g_{2} | -g_{8} |
(0, -1, -1, -1, -1, -1, 0) | -e_{2}+e_{7} | g_{-24} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-27} | 0 | 0 | 0 | 0 | 0 | g_{-26} | -g_{-24} | g_{-24} | 0 | 0 | 0 | g_{-24} | -g_{-24} | 0 | g_{-21} | 0 | 0 | 0 | -g_{-20} | 0 | 0 | g_{-17} | 0 | 0 | -g_{-15} | 0 | 0 | g_{-12} | 0 | -g_{-9} | 0 | 0 | g_{-6} | -g_{-2} | 0 | 0 | -h_{6}-h_{5}-h_{4}-h_{3}-h_{2} | 0 | -g_{1} | g_{7} | 0 |
(-1, -1, -1, -1, -1, 0, 0) | -e_{1}+e_{6} | g_{-23} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-28} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-26} | 0 | 0 | 0 | 0 | 0 | g_{-23} | 0 | 0 | 0 | g_{-23} | -g_{-23} | 0 | g_{-20} | 0 | 0 | 0 | -g_{-19} | 0 | 0 | g_{-16} | 0 | 0 | -g_{-14} | 0 | 0 | g_{-11} | 0 | -g_{-8} | 0 | 0 | g_{-5} | -g_{-1} | 0 | 0 | -h_{5}-h_{4}-h_{3}-h_{2}-h_{1} | 0 | 0 | g_{6} | 0 | g_{13} |
(0, 0, 0, -1, -1, -1, -1) | -e_{4}+e_{8} | g_{-22} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-28} | 0 | 0 | 0 | 0 | g_{-27} | 0 | 0 | 0 | 0 | 0 | g_{-25} | 0 | 0 | 0 | 0 | -g_{-22} | g_{-22} | 0 | 0 | g_{-22} | 0 | 0 | 0 | g_{-18} | 0 | 0 | -g_{-17} | 0 | 0 | 0 | g_{-13} | 0 | -g_{-11} | 0 | 0 | 0 | g_{-7} | -g_{-4} | 0 | 0 | 0 | -h_{7}-h_{6}-h_{5}-h_{4} | 0 | 0 | -g_{3} | 0 | -g_{9} | -g_{14} |
(0, 0, -1, -1, -1, -1, 0) | -e_{3}+e_{7} | g_{-21} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-26} | -g_{-25} | 0 | 0 | 0 | 0 | g_{-24} | 0 | 0 | -g_{-21} | g_{-21} | 0 | 0 | g_{-21} | -g_{-21} | 0 | 0 | g_{-17} | 0 | 0 | -g_{-16} | 0 | 0 | 0 | g_{-12} | 0 | -g_{-10} | 0 | 0 | 0 | g_{-6} | -g_{-3} | 0 | 0 | 0 | -h_{6}-h_{5}-h_{4}-h_{3} | 0 | 0 | -g_{2} | g_{7} | -g_{8} | 0 | 0 |
(0, -1, -1, -1, -1, 0, 0) | -e_{2}+e_{6} | g_{-20} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-27} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-24} | 0 | 0 | 0 | 0 | g_{-23} | -g_{-20} | g_{-20} | 0 | 0 | g_{-20} | -g_{-20} | 0 | 0 | g_{-16} | 0 | 0 | -g_{-15} | 0 | 0 | 0 | g_{-11} | 0 | -g_{-9} | 0 | 0 | 0 | g_{-5} | -g_{-2} | 0 | 0 | 0 | -h_{5}-h_{4}-h_{3}-h_{2} | 0 | 0 | -g_{1} | g_{6} | 0 | 0 | g_{13} | 0 |
(-1, -1, -1, -1, 0, 0, 0) | -e_{1}+e_{5} | g_{-19} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-28} | 0 | 0 | 0 | 0 | 0 | -g_{-26} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-23} | 0 | 0 | 0 | 0 | g_{-19} | 0 | 0 | g_{-19} | -g_{-19} | 0 | 0 | g_{-15} | 0 | 0 | -g_{-14} | 0 | 0 | 0 | g_{-10} | 0 | -g_{-8} | 0 | 0 | 0 | g_{-4} | -g_{-1} | 0 | 0 | 0 | -h_{4}-h_{3}-h_{2}-h_{1} | 0 | 0 | 0 | g_{5} | 0 | 0 | g_{12} | 0 | g_{18} |
(0, 0, 0, 0, -1, -1, -1) | -e_{5}+e_{8} | g_{-18} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-28} | 0 | 0 | 0 | g_{-27} | 0 | 0 | 0 | 0 | g_{-25} | 0 | 0 | 0 | 0 | 0 | g_{-22} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-18} | g_{-18} | 0 | g_{-18} | 0 | 0 | 0 | 0 | g_{-13} | 0 | -g_{-12} | 0 | 0 | 0 | 0 | g_{-7} | -g_{-5} | 0 | 0 | 0 | 0 | -h_{7}-h_{6}-h_{5} | 0 | 0 | 0 | -g_{4} | 0 | 0 | -g_{10} | 0 | -g_{15} | -g_{19} |
(0, 0, 0, -1, -1, -1, 0) | -e_{4}+e_{7} | g_{-17} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-26} | 0 | 0 | 0 | 0 | g_{-24} | 0 | -g_{-22} | 0 | 0 | 0 | g_{-21} | 0 | 0 | 0 | 0 | -g_{-17} | g_{-17} | 0 | g_{-17} | -g_{-17} | 0 | 0 | 0 | g_{-12} | 0 | -g_{-11} | 0 | 0 | 0 | 0 | g_{-6} | -g_{-4} | 0 | 0 | 0 | 0 | -h_{6}-h_{5}-h_{4} | 0 | 0 | 0 | -g_{3} | g_{7} | 0 | -g_{9} | 0 | -g_{14} | 0 | 0 |
(0, 0, -1, -1, -1, 0, 0) | -e_{3}+e_{6} | g_{-16} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-25} | 0 | 0 | 0 | 0 | g_{-23} | 0 | -g_{-21} | 0 | 0 | 0 | g_{-20} | 0 | 0 | -g_{-16} | g_{-16} | 0 | g_{-16} | -g_{-16} | 0 | 0 | 0 | g_{-11} | 0 | -g_{-10} | 0 | 0 | 0 | 0 | g_{-5} | -g_{-3} | 0 | 0 | 0 | 0 | -h_{5}-h_{4}-h_{3} | 0 | 0 | 0 | -g_{2} | g_{6} | 0 | -g_{8} | 0 | g_{13} | 0 | 0 | 0 |
(0, -1, -1, -1, 0, 0, 0) | -e_{2}+e_{5} | g_{-15} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-27} | 0 | 0 | 0 | 0 | 0 | -g_{-24} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-20} | 0 | 0 | 0 | g_{-19} | -g_{-15} | g_{-15} | 0 | g_{-15} | -g_{-15} | 0 | 0 | 0 | g_{-10} | 0 | -g_{-9} | 0 | 0 | 0 | 0 | g_{-4} | -g_{-2} | 0 | 0 | 0 | 0 | -h_{4}-h_{3}-h_{2} | 0 | 0 | 0 | -g_{1} | g_{5} | 0 | 0 | 0 | g_{12} | 0 | 0 | g_{18} | 0 |
(-1, -1, -1, 0, 0, 0, 0) | -e_{1}+e_{4} | g_{-14} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-28} | 0 | 0 | 0 | 0 | -g_{-26} | 0 | 0 | 0 | 0 | 0 | -g_{-23} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-19} | 0 | 0 | 0 | g_{-14} | 0 | g_{-14} | -g_{-14} | 0 | 0 | 0 | g_{-9} | 0 | -g_{-8} | 0 | 0 | 0 | 0 | g_{-3} | -g_{-1} | 0 | 0 | 0 | 0 | -h_{3}-h_{2}-h_{1} | 0 | 0 | 0 | 0 | g_{4} | 0 | 0 | 0 | g_{11} | 0 | 0 | g_{17} | 0 | g_{22} |
(0, 0, 0, 0, 0, -1, -1) | -e_{6}+e_{8} | g_{-13} | 0 | 0 | 0 | 0 | 0 | g_{-28} | 0 | 0 | g_{-27} | 0 | 0 | 0 | g_{-25} | 0 | 0 | 0 | 0 | g_{-22} | 0 | 0 | 0 | 0 | 0 | g_{-18} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-13} | g_{-13} | g_{-13} | 0 | 0 | 0 | 0 | 0 | g_{-7} | -g_{-6} | 0 | 0 | 0 | 0 | 0 | -h_{7}-h_{6} | 0 | 0 | 0 | 0 | -g_{5} | 0 | 0 | 0 | -g_{11} | 0 | 0 | -g_{16} | 0 | -g_{20} | -g_{23} |
(0, 0, 0, 0, -1, -1, 0) | -e_{5}+e_{7} | g_{-12} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-26} | 0 | 0 | 0 | g_{-24} | 0 | 0 | 0 | 0 | g_{-21} | 0 | 0 | -g_{-18} | 0 | 0 | g_{-17} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-12} | g_{-12} | g_{-12} | -g_{-12} | 0 | 0 | 0 | 0 | g_{-6} | -g_{-5} | 0 | 0 | 0 | 0 | 0 | -h_{6}-h_{5} | 0 | 0 | 0 | 0 | -g_{4} | g_{7} | 0 | 0 | -g_{10} | 0 | 0 | -g_{15} | 0 | -g_{19} | 0 | 0 |
(0, 0, 0, -1, -1, 0, 0) | -e_{4}+e_{6} | g_{-11} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-23} | -g_{-22} | 0 | 0 | 0 | g_{-20} | 0 | 0 | -g_{-17} | 0 | 0 | g_{-16} | 0 | 0 | 0 | 0 | -g_{-11} | g_{-11} | g_{-11} | -g_{-11} | 0 | 0 | 0 | 0 | g_{-5} | -g_{-4} | 0 | 0 | 0 | 0 | 0 | -h_{5}-h_{4} | 0 | 0 | 0 | 0 | -g_{3} | g_{6} | 0 | 0 | -g_{9} | 0 | g_{13} | -g_{14} | 0 | 0 | 0 | 0 | 0 |
(0, 0, -1, -1, 0, 0, 0) | -e_{3}+e_{5} | g_{-10} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-25} | 0 | 0 | 0 | 0 | 0 | -g_{-21} | 0 | 0 | 0 | g_{-19} | 0 | 0 | -g_{-16} | 0 | 0 | g_{-15} | 0 | 0 | -g_{-10} | g_{-10} | g_{-10} | -g_{-10} | 0 | 0 | 0 | 0 | g_{-4} | -g_{-3} | 0 | 0 | 0 | 0 | 0 | -h_{4}-h_{3} | 0 | 0 | 0 | 0 | -g_{2} | g_{5} | 0 | 0 | -g_{8} | 0 | g_{12} | 0 | 0 | 0 | g_{18} | 0 | 0 | 0 |
(0, -1, -1, 0, 0, 0, 0) | -e_{2}+e_{4} | g_{-9} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-27} | 0 | 0 | 0 | 0 | -g_{-24} | 0 | 0 | 0 | 0 | 0 | -g_{-20} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-15} | 0 | 0 | g_{-14} | -g_{-9} | g_{-9} | g_{-9} | -g_{-9} | 0 | 0 | 0 | 0 | g_{-3} | -g_{-2} | 0 | 0 | 0 | 0 | 0 | -h_{3}-h_{2} | 0 | 0 | 0 | 0 | -g_{1} | g_{4} | 0 | 0 | 0 | 0 | g_{11} | 0 | 0 | 0 | g_{17} | 0 | 0 | g_{22} | 0 |
(-1, -1, 0, 0, 0, 0, 0) | -e_{1}+e_{3} | g_{-8} | 0 | 0 | 0 | -g_{-28} | 0 | 0 | 0 | -g_{-26} | 0 | 0 | 0 | 0 | -g_{-23} | 0 | 0 | 0 | 0 | 0 | -g_{-19} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-14} | 0 | 0 | g_{-8} | g_{-8} | -g_{-8} | 0 | 0 | 0 | 0 | g_{-2} | -g_{-1} | 0 | 0 | 0 | 0 | 0 | -h_{2}-h_{1} | 0 | 0 | 0 | 0 | 0 | g_{3} | 0 | 0 | 0 | 0 | g_{10} | 0 | 0 | 0 | g_{16} | 0 | 0 | g_{21} | 0 | g_{25} |
(0, 0, 0, 0, 0, 0, -1) | -e_{7}+e_{8} | g_{-7} | 0 | 0 | g_{-28} | 0 | g_{-27} | 0 | 0 | g_{-25} | 0 | 0 | 0 | g_{-22} | 0 | 0 | 0 | 0 | g_{-18} | 0 | 0 | 0 | 0 | 0 | g_{-13} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-7} | 2g_{-7} | 0 | 0 | 0 | 0 | 0 | 0 | -h_{7} | 0 | 0 | 0 | 0 | 0 | -g_{6} | 0 | 0 | 0 | 0 | -g_{12} | 0 | 0 | 0 | -g_{17} | 0 | 0 | -g_{21} | 0 | -g_{24} | -g_{26} |
(0, 0, 0, 0, 0, -1, 0) | -e_{6}+e_{7} | g_{-6} | 0 | 0 | 0 | 0 | 0 | g_{-26} | 0 | 0 | g_{-24} | 0 | 0 | 0 | g_{-21} | 0 | 0 | 0 | 0 | g_{-17} | 0 | 0 | 0 | -g_{-13} | 0 | g_{-12} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-6} | 2g_{-6} | -g_{-6} | 0 | 0 | 0 | 0 | 0 | -h_{6} | 0 | 0 | 0 | 0 | 0 | -g_{5} | g_{7} | 0 | 0 | 0 | -g_{11} | 0 | 0 | 0 | -g_{16} | 0 | 0 | -g_{20} | 0 | -g_{23} | 0 | 0 |
(0, 0, 0, 0, -1, 0, 0) | -e_{5}+e_{6} | g_{-5} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{-23} | 0 | 0 | 0 | g_{-20} | 0 | -g_{-18} | 0 | 0 | g_{-16} | 0 | 0 | 0 | -g_{-12} | 0 | g_{-11} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-5} | 2g_{-5} | -g_{-5} | 0 | 0 | 0 | 0 | 0 | -h_{5} | 0 | 0 | 0 | 0 | 0 | -g_{4} | g_{6} | 0 | 0 | 0 | -g_{10} | 0 | g_{13} | 0 | -g_{15} | 0 | 0 | -g_{19} | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, -1, 0, 0, 0) | -e_{4}+e_{5} | g_{-4} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-22} | 0 | 0 | 0 | g_{-19} | 0 | -g_{-17} | 0 | 0 | g_{-15} | 0 | 0 | 0 | -g_{-11} | 0 | g_{-10} | 0 | 0 | 0 | 0 | -g_{-4} | 2g_{-4} | -g_{-4} | 0 | 0 | 0 | 0 | 0 | -h_{4} | 0 | 0 | 0 | 0 | 0 | -g_{3} | g_{5} | 0 | 0 | 0 | -g_{9} | 0 | g_{12} | 0 | -g_{14} | 0 | 0 | g_{18} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, -1, 0, 0, 0, 0) | -e_{3}+e_{4} | g_{-3} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-25} | 0 | 0 | 0 | 0 | -g_{-21} | 0 | 0 | 0 | 0 | 0 | -g_{-16} | 0 | 0 | g_{-14} | 0 | 0 | 0 | -g_{-10} | 0 | g_{-9} | 0 | 0 | -g_{-3} | 2g_{-3} | -g_{-3} | 0 | 0 | 0 | 0 | 0 | -h_{3} | 0 | 0 | 0 | 0 | 0 | -g_{2} | g_{4} | 0 | 0 | 0 | -g_{8} | 0 | g_{11} | 0 | 0 | 0 | 0 | g_{17} | 0 | 0 | 0 | g_{22} | 0 | 0 | 0 |
(0, -1, 0, 0, 0, 0, 0) | -e_{2}+e_{3} | g_{-2} | 0 | 0 | 0 | -g_{-27} | 0 | 0 | 0 | -g_{-24} | 0 | 0 | 0 | 0 | -g_{-20} | 0 | 0 | 0 | 0 | 0 | -g_{-15} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-9} | 0 | g_{-8} | -g_{-2} | 2g_{-2} | -g_{-2} | 0 | 0 | 0 | 0 | 0 | -h_{2} | 0 | 0 | 0 | 0 | 0 | -g_{1} | g_{3} | 0 | 0 | 0 | 0 | 0 | g_{10} | 0 | 0 | 0 | 0 | g_{16} | 0 | 0 | 0 | g_{21} | 0 | 0 | g_{25} | 0 |
(-1, 0, 0, 0, 0, 0, 0) | -e_{1}+e_{2} | g_{-1} | 0 | -g_{-28} | 0 | 0 | -g_{-26} | 0 | 0 | 0 | -g_{-23} | 0 | 0 | 0 | 0 | -g_{-19} | 0 | 0 | 0 | 0 | 0 | -g_{-14} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-8} | 0 | 2g_{-1} | -g_{-1} | 0 | 0 | 0 | 0 | 0 | -h_{1} | 0 | 0 | 0 | 0 | 0 | 0 | g_{2} | 0 | 0 | 0 | 0 | 0 | g_{9} | 0 | 0 | 0 | 0 | g_{15} | 0 | 0 | 0 | g_{20} | 0 | 0 | g_{24} | 0 | g_{27} |
(0, 0, 0, 0, 0, 0, 0) | 0 | h_{1} | -g_{-28} | g_{-27} | -g_{-26} | 0 | g_{-24} | -g_{-23} | 0 | 0 | g_{-20} | -g_{-19} | 0 | 0 | 0 | g_{-15} | -g_{-14} | 0 | 0 | 0 | 0 | g_{-9} | -g_{-8} | 0 | 0 | 0 | 0 | 0 | g_{-2} | -2g_{-1} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2g_{1} | -g_{2} | 0 | 0 | 0 | 0 | 0 | g_{8} | -g_{9} | 0 | 0 | 0 | 0 | g_{14} | -g_{15} | 0 | 0 | 0 | g_{19} | -g_{20} | 0 | 0 | g_{23} | -g_{24} | 0 | g_{26} | -g_{27} | g_{28} |
(0, 0, 0, 0, 0, 0, 0) | 0 | h_{2} | 0 | -g_{-27} | 0 | g_{-25} | -g_{-24} | 0 | 0 | g_{-21} | -g_{-20} | 0 | 0 | 0 | g_{-16} | -g_{-15} | 0 | 0 | 0 | 0 | g_{-10} | -g_{-9} | -g_{-8} | 0 | 0 | 0 | 0 | g_{-3} | -2g_{-2} | g_{-1} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{1} | 2g_{2} | -g_{3} | 0 | 0 | 0 | 0 | g_{8} | g_{9} | -g_{10} | 0 | 0 | 0 | 0 | g_{15} | -g_{16} | 0 | 0 | 0 | g_{20} | -g_{21} | 0 | 0 | g_{24} | -g_{25} | 0 | g_{27} | 0 |
(0, 0, 0, 0, 0, 0, 0) | 0 | h_{3} | 0 | 0 | 0 | -g_{-25} | 0 | 0 | g_{-22} | -g_{-21} | 0 | 0 | 0 | g_{-17} | -g_{-16} | 0 | -g_{-14} | 0 | 0 | g_{-11} | -g_{-10} | -g_{-9} | g_{-8} | 0 | 0 | 0 | g_{-4} | -2g_{-3} | g_{-2} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{2} | 2g_{3} | -g_{4} | 0 | 0 | 0 | -g_{8} | g_{9} | g_{10} | -g_{11} | 0 | 0 | g_{14} | 0 | g_{16} | -g_{17} | 0 | 0 | 0 | g_{21} | -g_{22} | 0 | 0 | g_{25} | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0, 0) | 0 | h_{4} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-22} | 0 | 0 | -g_{-19} | g_{-18} | -g_{-17} | 0 | -g_{-15} | g_{-14} | 0 | g_{-12} | -g_{-11} | -g_{-10} | g_{-9} | 0 | 0 | 0 | g_{-5} | -2g_{-4} | g_{-3} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{3} | 2g_{4} | -g_{5} | 0 | 0 | 0 | -g_{9} | g_{10} | g_{11} | -g_{12} | 0 | -g_{14} | g_{15} | 0 | g_{17} | -g_{18} | g_{19} | 0 | 0 | g_{22} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0, 0) | 0 | h_{5} | 0 | 0 | 0 | 0 | 0 | -g_{-23} | 0 | 0 | -g_{-20} | g_{-19} | -g_{-18} | 0 | -g_{-16} | g_{-15} | 0 | g_{-13} | -g_{-12} | -g_{-11} | g_{-10} | 0 | 0 | 0 | g_{-6} | -2g_{-5} | g_{-4} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{4} | 2g_{5} | -g_{6} | 0 | 0 | 0 | -g_{10} | g_{11} | g_{12} | -g_{13} | 0 | -g_{15} | g_{16} | 0 | g_{18} | -g_{19} | g_{20} | 0 | 0 | g_{23} | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0, 0) | 0 | h_{6} | 0 | 0 | -g_{-26} | 0 | -g_{-24} | g_{-23} | 0 | -g_{-21} | g_{-20} | 0 | 0 | -g_{-17} | g_{-16} | 0 | 0 | -g_{-13} | -g_{-12} | g_{-11} | 0 | 0 | 0 | g_{-7} | -2g_{-6} | g_{-5} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{5} | 2g_{6} | -g_{7} | 0 | 0 | 0 | -g_{11} | g_{12} | g_{13} | 0 | 0 | -g_{16} | g_{17} | 0 | 0 | -g_{20} | g_{21} | 0 | -g_{23} | g_{24} | 0 | g_{26} | 0 | 0 |
(0, 0, 0, 0, 0, 0, 0) | 0 | h_{7} | -g_{-28} | -g_{-27} | g_{-26} | -g_{-25} | g_{-24} | 0 | -g_{-22} | g_{-21} | 0 | 0 | -g_{-18} | g_{-17} | 0 | 0 | 0 | -g_{-13} | g_{-12} | 0 | 0 | 0 | 0 | -2g_{-7} | g_{-6} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -g_{6} | 2g_{7} | 0 | 0 | 0 | 0 | -g_{12} | g_{13} | 0 | 0 | 0 | -g_{17} | g_{18} | 0 | 0 | -g_{21} | g_{22} | 0 | -g_{24} | g_{25} | -g_{26} | g_{27} | g_{28} |
(1, 0, 0, 0, 0, 0, 0) | e_{1}-e_{2} | g_{1} | -g_{-27} | 0 | -g_{-24} | 0 | 0 | -g_{-20} | 0 | 0 | 0 | -g_{-15} | 0 | 0 | 0 | 0 | -g_{-9} | 0 | 0 | 0 | 0 | 0 | -g_{-2} | 0 | 0 | 0 | 0 | 0 | 0 | h_{1} | -2g_{1} | g_{1} | 0 | 0 | 0 | 0 | 0 | 0 | g_{8} | 0 | 0 | 0 | 0 | 0 | 0 | g_{14} | 0 | 0 | 0 | 0 | 0 | g_{19} | 0 | 0 | 0 | 0 | g_{23} | 0 | 0 | 0 | g_{26} | 0 | 0 | g_{28} | 0 |
(0, 1, 0, 0, 0, 0, 0) | e_{2}-e_{3} | g_{2} | 0 | -g_{-25} | 0 | 0 | -g_{-21} | 0 | 0 | 0 | -g_{-16} | 0 | 0 | 0 | 0 | -g_{-10} | 0 | 0 | 0 | 0 | 0 | -g_{-3} | g_{-1} | 0 | 0 | 0 | 0 | 0 | h_{2} | 0 | g_{2} | -2g_{2} | g_{2} | 0 | 0 | 0 | 0 | -g_{8} | 0 | g_{9} | 0 | 0 | 0 | 0 | 0 | 0 | g_{15} | 0 | 0 | 0 | 0 | 0 | g_{20} | 0 | 0 | 0 | 0 | g_{24} | 0 | 0 | 0 | g_{27} | 0 | 0 | 0 |
(0, 0, 1, 0, 0, 0, 0) | e_{3}-e_{4} | g_{3} | 0 | 0 | 0 | -g_{-22} | 0 | 0 | 0 | -g_{-17} | 0 | 0 | 0 | 0 | -g_{-11} | 0 | g_{-8} | 0 | 0 | 0 | -g_{-4} | g_{-2} | 0 | 0 | 0 | 0 | 0 | h_{3} | 0 | 0 | 0 | g_{3} | -2g_{3} | g_{3} | 0 | 0 | 0 | 0 | -g_{9} | 0 | g_{10} | 0 | 0 | 0 | -g_{14} | 0 | 0 | g_{16} | 0 | 0 | 0 | 0 | 0 | g_{21} | 0 | 0 | 0 | 0 | g_{25} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 1, 0, 0, 0) | e_{4}-e_{5} | g_{4} | 0 | 0 | 0 | 0 | 0 | 0 | -g_{-18} | 0 | 0 | g_{-14} | 0 | -g_{-12} | 0 | g_{-9} | 0 | 0 | 0 | -g_{-5} | g_{-3} | 0 | 0 | 0 | 0 | 0 | h_{4} | 0 | 0 | 0 | 0 | 0 | g_{4} | -2g_{4} | g_{4} | 0 | 0 | 0 | 0 | -g_{10} | 0 | g_{11} | 0 | 0 | 0 | -g_{15} | 0 | 0 | g_{17} | 0 | -g_{19} | 0 | 0 | 0 | g_{22} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 1, 0, 0) | e_{5}-e_{6} | g_{5} | 0 | 0 | 0 | 0 | 0 | g_{-19} | 0 | 0 | g_{-15} | 0 | -g_{-13} | 0 | g_{-10} | 0 | 0 | 0 | -g_{-6} | g_{-4} | 0 | 0 | 0 | 0 | 0 | h_{5} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{5} | -2g_{5} | g_{5} | 0 | 0 | 0 | 0 | -g_{11} | 0 | g_{12} | 0 | 0 | 0 | -g_{16} | 0 | 0 | g_{18} | 0 | -g_{20} | 0 | 0 | 0 | -g_{23} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 1, 0) | e_{6}-e_{7} | g_{6} | 0 | 0 | g_{-23} | 0 | g_{-20} | 0 | 0 | g_{-16} | 0 | 0 | 0 | g_{-11} | 0 | 0 | 0 | -g_{-7} | g_{-5} | 0 | 0 | 0 | 0 | 0 | h_{6} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{6} | -2g_{6} | g_{6} | 0 | 0 | 0 | 0 | -g_{12} | 0 | g_{13} | 0 | 0 | 0 | -g_{17} | 0 | 0 | 0 | 0 | -g_{21} | 0 | 0 | 0 | -g_{24} | 0 | 0 | -g_{26} | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 0, 1) | e_{7}-e_{8} | g_{7} | g_{-26} | g_{-24} | 0 | g_{-21} | 0 | 0 | g_{-17} | 0 | 0 | 0 | g_{-12} | 0 | 0 | 0 | 0 | g_{-6} | 0 | 0 | 0 | 0 | 0 | h_{7} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{7} | -2g_{7} | 0 | 0 | 0 | 0 | 0 | -g_{13} | 0 | 0 | 0 | 0 | 0 | -g_{18} | 0 | 0 | 0 | 0 | -g_{22} | 0 | 0 | 0 | -g_{25} | 0 | 0 | -g_{27} | 0 | -g_{28} | 0 | 0 |
(1, 1, 0, 0, 0, 0, 0) | e_{1}-e_{3} | g_{8} | -g_{-25} | 0 | -g_{-21} | 0 | 0 | -g_{-16} | 0 | 0 | 0 | -g_{-10} | 0 | 0 | 0 | 0 | -g_{-3} | 0 | 0 | 0 | 0 | 0 | h_{2}+h_{1} | 0 | 0 | 0 | 0 | 0 | g_{1} | -g_{2} | -g_{8} | -g_{8} | g_{8} | 0 | 0 | 0 | 0 | 0 | 0 | g_{14} | 0 | 0 | 0 | 0 | 0 | 0 | g_{19} | 0 | 0 | 0 | 0 | 0 | g_{23} | 0 | 0 | 0 | 0 | g_{26} | 0 | 0 | 0 | g_{28} | 0 | 0 | 0 |
(0, 1, 1, 0, 0, 0, 0) | e_{2}-e_{4} | g_{9} | 0 | -g_{-22} | 0 | 0 | -g_{-17} | 0 | 0 | 0 | -g_{-11} | 0 | 0 | 0 | 0 | -g_{-4} | g_{-1} | 0 | 0 | 0 | 0 | h_{3}+h_{2} | 0 | 0 | 0 | 0 | 0 | g_{2} | -g_{3} | 0 | g_{9} | -g_{9} | -g_{9} | g_{9} | 0 | 0 | 0 | -g_{14} | 0 | 0 | g_{15} | 0 | 0 | 0 | 0 | 0 | 0 | g_{20} | 0 | 0 | 0 | 0 | 0 | g_{24} | 0 | 0 | 0 | 0 | g_{27} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 1, 0, 0, 0) | e_{3}-e_{5} | g_{10} | 0 | 0 | 0 | -g_{-18} | 0 | 0 | 0 | -g_{-12} | 0 | g_{-8} | 0 | 0 | -g_{-5} | g_{-2} | 0 | 0 | 0 | 0 | h_{4}+h_{3} | 0 | 0 | 0 | 0 | 0 | g_{3} | -g_{4} | 0 | 0 | 0 | g_{10} | -g_{10} | -g_{10} | g_{10} | 0 | 0 | 0 | -g_{15} | 0 | 0 | g_{16} | 0 | 0 | -g_{19} | 0 | 0 | 0 | g_{21} | 0 | 0 | 0 | 0 | 0 | g_{25} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 1, 1, 0, 0) | e_{4}-e_{6} | g_{11} | 0 | 0 | 0 | 0 | 0 | g_{-14} | -g_{-13} | 0 | g_{-9} | 0 | 0 | -g_{-6} | g_{-3} | 0 | 0 | 0 | 0 | h_{5}+h_{4} | 0 | 0 | 0 | 0 | 0 | g_{4} | -g_{5} | 0 | 0 | 0 | 0 | 0 | g_{11} | -g_{11} | -g_{11} | g_{11} | 0 | 0 | 0 | -g_{16} | 0 | 0 | g_{17} | 0 | 0 | -g_{20} | 0 | 0 | 0 | g_{22} | -g_{23} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 1, 1, 0) | e_{5}-e_{7} | g_{12} | 0 | 0 | g_{-19} | 0 | g_{-15} | 0 | 0 | g_{-10} | 0 | 0 | -g_{-7} | g_{-4} | 0 | 0 | 0 | 0 | h_{6}+h_{5} | 0 | 0 | 0 | 0 | 0 | g_{5} | -g_{6} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{12} | -g_{12} | -g_{12} | g_{12} | 0 | 0 | 0 | -g_{17} | 0 | 0 | g_{18} | 0 | 0 | -g_{21} | 0 | 0 | 0 | 0 | -g_{24} | 0 | 0 | 0 | -g_{26} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 0, 1, 1) | e_{6}-e_{8} | g_{13} | g_{-23} | g_{-20} | 0 | g_{-16} | 0 | 0 | g_{-11} | 0 | 0 | 0 | g_{-5} | 0 | 0 | 0 | 0 | h_{7}+h_{6} | 0 | 0 | 0 | 0 | 0 | g_{6} | -g_{7} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{13} | -g_{13} | -g_{13} | 0 | 0 | 0 | 0 | -g_{18} | 0 | 0 | 0 | 0 | 0 | -g_{22} | 0 | 0 | 0 | 0 | -g_{25} | 0 | 0 | 0 | -g_{27} | 0 | 0 | -g_{28} | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 0, 0, 0, 0) | e_{1}-e_{4} | g_{14} | -g_{-22} | 0 | -g_{-17} | 0 | 0 | -g_{-11} | 0 | 0 | 0 | -g_{-4} | 0 | 0 | 0 | 0 | h_{3}+h_{2}+h_{1} | 0 | 0 | 0 | 0 | g_{1} | -g_{3} | 0 | 0 | 0 | 0 | g_{8} | 0 | -g_{9} | -g_{14} | 0 | -g_{14} | g_{14} | 0 | 0 | 0 | 0 | 0 | 0 | g_{19} | 0 | 0 | 0 | 0 | 0 | 0 | g_{23} | 0 | 0 | 0 | 0 | 0 | g_{26} | 0 | 0 | 0 | 0 | g_{28} | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 0, 0, 0) | e_{2}-e_{5} | g_{15} | 0 | -g_{-18} | 0 | 0 | -g_{-12} | 0 | 0 | 0 | -g_{-5} | g_{-1} | 0 | 0 | 0 | h_{4}+h_{3}+h_{2} | 0 | 0 | 0 | 0 | g_{2} | -g_{4} | 0 | 0 | 0 | 0 | g_{9} | 0 | -g_{10} | 0 | g_{15} | -g_{15} | 0 | -g_{15} | g_{15} | 0 | 0 | -g_{19} | 0 | 0 | 0 | g_{20} | 0 | 0 | 0 | 0 | 0 | 0 | g_{24} | 0 | 0 | 0 | 0 | 0 | g_{27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 1, 1, 0, 0) | e_{3}-e_{6} | g_{16} | 0 | 0 | 0 | -g_{-13} | 0 | g_{-8} | 0 | -g_{-6} | g_{-2} | 0 | 0 | 0 | h_{5}+h_{4}+h_{3} | 0 | 0 | 0 | 0 | g_{3} | -g_{5} | 0 | 0 | 0 | 0 | g_{10} | 0 | -g_{11} | 0 | 0 | 0 | g_{16} | -g_{16} | 0 | -g_{16} | g_{16} | 0 | 0 | -g_{20} | 0 | 0 | 0 | g_{21} | 0 | -g_{23} | 0 | 0 | 0 | 0 | g_{25} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 1, 1, 1, 0) | e_{4}-e_{7} | g_{17} | 0 | 0 | g_{-14} | 0 | g_{-9} | 0 | -g_{-7} | g_{-3} | 0 | 0 | 0 | h_{6}+h_{5}+h_{4} | 0 | 0 | 0 | 0 | g_{4} | -g_{6} | 0 | 0 | 0 | 0 | g_{11} | 0 | -g_{12} | 0 | 0 | 0 | 0 | 0 | g_{17} | -g_{17} | 0 | -g_{17} | g_{17} | 0 | 0 | -g_{21} | 0 | 0 | 0 | g_{22} | 0 | -g_{24} | 0 | 0 | 0 | 0 | -g_{26} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 0, 1, 1, 1) | e_{5}-e_{8} | g_{18} | g_{-19} | g_{-15} | 0 | g_{-10} | 0 | 0 | g_{-4} | 0 | 0 | 0 | h_{7}+h_{6}+h_{5} | 0 | 0 | 0 | 0 | g_{5} | -g_{7} | 0 | 0 | 0 | 0 | g_{12} | 0 | -g_{13} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | g_{18} | -g_{18} | 0 | -g_{18} | 0 | 0 | 0 | -g_{22} | 0 | 0 | 0 | 0 | 0 | -g_{25} | 0 | 0 | 0 | 0 | -g_{27} | 0 | 0 | 0 | -g_{28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 0, 0, 0) | e_{1}-e_{5} | g_{19} | -g_{-18} | 0 | -g_{-12} | 0 | 0 | -g_{-5} | 0 | 0 | 0 | h_{4}+h_{3}+h_{2}+h_{1} | 0 | 0 | 0 | g_{1} | -g_{4} | 0 | 0 | 0 | g_{8} | 0 | -g_{10} | 0 | 0 | 0 | g_{14} | 0 | 0 | -g_{15} | -g_{19} | 0 | 0 | -g_{19} | g_{19} | 0 | 0 | 0 | 0 | 0 | 0 | g_{23} | 0 | 0 | 0 | 0 | 0 | 0 | g_{26} | 0 | 0 | 0 | 0 | 0 | g_{28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 1, 0, 0) | e_{2}-e_{6} | g_{20} | 0 | -g_{-13} | 0 | 0 | -g_{-6} | g_{-1} | 0 | 0 | h_{5}+h_{4}+h_{3}+h_{2} | 0 | 0 | 0 | g_{2} | -g_{5} | 0 | 0 | 0 | g_{9} | 0 | -g_{11} | 0 | 0 | 0 | g_{15} | 0 | 0 | -g_{16} | 0 | g_{20} | -g_{20} | 0 | 0 | -g_{20} | g_{20} | 0 | -g_{23} | 0 | 0 | 0 | 0 | g_{24} | 0 | 0 | 0 | 0 | 0 | 0 | g_{27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 1, 1, 1, 0) | e_{3}-e_{7} | g_{21} | 0 | 0 | g_{-8} | -g_{-7} | g_{-2} | 0 | 0 | h_{6}+h_{5}+h_{4}+h_{3} | 0 | 0 | 0 | g_{3} | -g_{6} | 0 | 0 | 0 | g_{10} | 0 | -g_{12} | 0 | 0 | 0 | g_{16} | 0 | 0 | -g_{17} | 0 | 0 | 0 | g_{21} | -g_{21} | 0 | 0 | -g_{21} | g_{21} | 0 | -g_{24} | 0 | 0 | 0 | 0 | g_{25} | -g_{26} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 0, 1, 1, 1, 1) | e_{4}-e_{8} | g_{22} | g_{-14} | g_{-9} | 0 | g_{-3} | 0 | 0 | h_{7}+h_{6}+h_{5}+h_{4} | 0 | 0 | 0 | g_{4} | -g_{7} | 0 | 0 | 0 | g_{11} | 0 | -g_{13} | 0 | 0 | 0 | g_{17} | 0 | 0 | -g_{18} | 0 | 0 | 0 | 0 | 0 | g_{22} | -g_{22} | 0 | 0 | -g_{22} | 0 | 0 | -g_{25} | 0 | 0 | 0 | 0 | 0 | -g_{27} | 0 | 0 | 0 | 0 | -g_{28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 1, 0, 0) | e_{1}-e_{6} | g_{23} | -g_{-13} | 0 | -g_{-6} | 0 | 0 | h_{5}+h_{4}+h_{3}+h_{2}+h_{1} | 0 | 0 | g_{1} | -g_{5} | 0 | 0 | g_{8} | 0 | -g_{11} | 0 | 0 | g_{14} | 0 | 0 | -g_{16} | 0 | 0 | g_{19} | 0 | 0 | 0 | -g_{20} | -g_{23} | 0 | 0 | 0 | -g_{23} | g_{23} | 0 | 0 | 0 | 0 | 0 | 0 | g_{26} | 0 | 0 | 0 | 0 | 0 | 0 | g_{28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 1, 1, 0) | e_{2}-e_{7} | g_{24} | 0 | -g_{-7} | g_{-1} | 0 | h_{6}+h_{5}+h_{4}+h_{3}+h_{2} | 0 | 0 | g_{2} | -g_{6} | 0 | 0 | g_{9} | 0 | -g_{12} | 0 | 0 | g_{15} | 0 | 0 | -g_{17} | 0 | 0 | g_{20} | 0 | 0 | 0 | -g_{21} | 0 | g_{24} | -g_{24} | 0 | 0 | 0 | -g_{24} | g_{24} | -g_{26} | 0 | 0 | 0 | 0 | 0 | g_{27} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 0, 1, 1, 1, 1, 1) | e_{3}-e_{8} | g_{25} | g_{-8} | g_{-2} | 0 | h_{7}+h_{6}+h_{5}+h_{4}+h_{3} | 0 | 0 | g_{3} | -g_{7} | 0 | 0 | g_{10} | 0 | -g_{13} | 0 | 0 | g_{16} | 0 | 0 | -g_{18} | 0 | 0 | g_{21} | 0 | 0 | 0 | -g_{22} | 0 | 0 | 0 | g_{25} | -g_{25} | 0 | 0 | 0 | -g_{25} | 0 | -g_{27} | 0 | 0 | 0 | 0 | 0 | -g_{28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 1, 1, 0) | e_{1}-e_{7} | g_{26} | -g_{-7} | 0 | h_{6}+h_{5}+h_{4}+h_{3}+h_{2}+h_{1} | 0 | g_{1} | -g_{6} | 0 | g_{8} | 0 | -g_{12} | 0 | g_{14} | 0 | 0 | -g_{17} | 0 | g_{19} | 0 | 0 | 0 | -g_{21} | 0 | g_{23} | 0 | 0 | 0 | 0 | -g_{24} | -g_{26} | 0 | 0 | 0 | 0 | -g_{26} | g_{26} | 0 | 0 | 0 | 0 | 0 | 0 | g_{28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(0, 1, 1, 1, 1, 1, 1) | e_{2}-e_{8} | g_{27} | g_{-1} | h_{7}+h_{6}+h_{5}+h_{4}+h_{3}+h_{2} | 0 | g_{2} | -g_{7} | 0 | g_{9} | 0 | -g_{13} | 0 | g_{15} | 0 | 0 | -g_{18} | 0 | g_{20} | 0 | 0 | 0 | -g_{22} | 0 | g_{24} | 0 | 0 | 0 | 0 | -g_{25} | 0 | g_{27} | -g_{27} | 0 | 0 | 0 | 0 | -g_{27} | -g_{28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(1, 1, 1, 1, 1, 1, 1) | e_{1}-e_{8} | g_{28} | h_{7}+h_{6}+h_{5}+h_{4}+h_{3}+h_{2}+h_{1} | g_{1} | -g_{7} | g_{8} | 0 | -g_{13} | g_{14} | 0 | 0 | -g_{18} | g_{19} | 0 | 0 | 0 | -g_{22} | g_{23} | 0 | 0 | 0 | 0 | -g_{25} | g_{26} | 0 | 0 | 0 | 0 | 0 | -g_{27} | -g_{28} | 0 | 0 | 0 | 0 | 0 | -g_{28} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
We define the symmetric Cartan matrix (7/8, 3/4, 5/8, 1/2, 3/8, 1/4, 1/8) | = | \(\displaystyle 7/8\varepsilon_{1}-1/8\varepsilon_{2}-1/8\varepsilon_{3}-1/8\varepsilon_{4}-1/8\varepsilon_{5}-1/8\varepsilon_{6}-1/8\varepsilon_{7}-1/8\varepsilon_{8}\) |
(3/4, 3/2, 5/4, 1, 3/4, 1/2, 1/4) | = | \(\displaystyle 3/4\varepsilon_{1}+3/4\varepsilon_{2}-1/4\varepsilon_{3}-1/4\varepsilon_{4}-1/4\varepsilon_{5}-1/4\varepsilon_{6}-1/4\varepsilon_{7}-1/4\varepsilon_{8}\) |
(5/8, 5/4, 15/8, 3/2, 9/8, 3/4, 3/8) | = | \(\displaystyle 5/8\varepsilon_{1}+5/8\varepsilon_{2}+5/8\varepsilon_{3}-3/8\varepsilon_{4}-3/8\varepsilon_{5}-3/8\varepsilon_{6}-3/8\varepsilon_{7}-3/8\varepsilon_{8}\) |
(1/2, 1, 3/2, 2, 3/2, 1, 1/2) | = | \(\displaystyle 1/2\varepsilon_{1}+1/2\varepsilon_{2}+1/2\varepsilon_{3}+1/2\varepsilon_{4}-1/2\varepsilon_{5}-1/2\varepsilon_{6}-1/2\varepsilon_{7}-1/2\varepsilon_{8}\) |
(3/8, 3/4, 9/8, 3/2, 15/8, 5/4, 5/8) | = | \(\displaystyle 3/8\varepsilon_{1}+3/8\varepsilon_{2}+3/8\varepsilon_{3}+3/8\varepsilon_{4}+3/8\varepsilon_{5}-5/8\varepsilon_{6}-5/8\varepsilon_{7}-5/8\varepsilon_{8}\) |
(1/4, 1/2, 3/4, 1, 5/4, 3/2, 3/4) | = | \(\displaystyle 1/4\varepsilon_{1}+1/4\varepsilon_{2}+1/4\varepsilon_{3}+1/4\varepsilon_{4}+1/4\varepsilon_{5}+1/4\varepsilon_{6}-3/4\varepsilon_{7}-3/4\varepsilon_{8}\) |
(1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8) | = | \(\displaystyle 1/8\varepsilon_{1}+1/8\varepsilon_{2}+1/8\varepsilon_{3}+1/8\varepsilon_{4}+1/8\varepsilon_{5}+1/8\varepsilon_{6}+1/8\varepsilon_{7}-7/8\varepsilon_{8}\) |